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Abstract

Time-lapse seismic surveys have become a powerful
reservoir monitoring tool. The basic approach in
time-lapse surveys is to image the changes in the
reservoir by subtracting separated-in-time seismic
images of the reservoir. Recently FWI has been
used as an alternative time-lapse monitoring tool.
However, in practice nonlinear gradient-based FWI is
limited due to its notorious sensitivity to the choice
of the starting model. Kernel decomposition based
on scattering theory allows to break the acoustic-
wavefield sensitivity kernels with respect to model
parameters into background and singular parts, which
should help to address model-convergence issues
in FWL In this work we apply scattering theory
to the time-lapse problem, considering the time-
lapse change as a perturbation of the singular part
of the model. In the framework of time-lapse
differential-waveform inversion, and under application
of scattering-based decomposition of the sensitivity
kernel, we take advantage of the additional illumination
of the time-lapse change provided by multiple-
scattering phenomena to improve the perturbation
estimates from FWI.

Introduction

In the last few years, time-lapse seismic surveys became a
powerful tool used to monitor the fluid-flow in a producing
reservoir. In general words, such a survey consist in
acquiring and analyzing multiple seismic data, repeated
at the same site over time in order to look for differences
from which one can infer the changes in the reservoir
due to production. This is possible because, as fluid
saturations and pressures in the reservoir change, the
seismic reflection properties change accordingly.

The basic approach in time-lapse surveys is to image
the changes in the reservoir by subtracting separated-in-
time seismic images of the reservoir. A seismic image
contains information on reflections that depends on both
the geological structure and its fluid contents. On a single-
time images these contributions are coupled and difficult
to separate. Assuming that geology is time-invariant
during production and that repeatability in the seismic data
acquisition is, in some way, assured, the image difference
from a time-lapse survey would indicate the changes due

only to the fluid-flow since, to first order, the geology part
subtracts out since it is time invariant (Lumley, 2001).

Recently FWI has been used as an alternative time-lapse
monitoring tool. FWI allows the reconstruction of high-
resolution velocity models of the subsurface through the
extraction of the full information content of seismic data
(Tarantola, 1984; Virieux and Operto, 2009). Since the
FWI approach delivers high resolution quantitative images
of macro-scale physical parameter, it could be a good
candidate for monitoring applications to reconstruct the
parameter variation through a time evolution (Asnaashari
et al., 2012).

Asnaashari et al. (2012) studied the robustness of three
different FWI methods applied to time-lapsed problems:
differential method, parallel difference method and the
sequential difference method. In the differential method,
instead of minimizing the difference between the observed
and modeled data, the difference of the differential data
between two sets of data is minimized to obtain the time-
lapse change estimate (Watanabe et al., 2004). The
parallel difference method considers independent inversion
of the baseline and monitor data-sets, using a similar
starting model (Plessix et al.,, 2010). The sequential
difference method uses the recovered baseline model as
a starting model for the monitor data inversion.

While in principle capable of handling all aspects of
wave propagation contained in the data, including full
nonlinearity, in practice nonlinear gradient-based FWI is
limited due to its notorious sensitivity to the choice of
the starting model. This is so because, for narrow-offset
acquisition of reflection data, the seismic wavefield is rather
insensitive to high/intermediate wavelengths.

To help addressing model convergence issues in FWI, we
are studying a decomposition based on scattering theory
that allows to break the acoustic-wavefield sensitivity
kernels (SKs) with respect to model parameters into
background and singular parts (Macedo et al.,, 2012,
2013). We were able to demonstrate that the forward
decomposition is successful in bringing out subkernels
that unraveled different levels of non-linearity with respect
to data and model. This, in turn, could be translated
into different levels of interaction between non-, single-,
and multiple-scattered information that otherwise would be
hidden in the full-wavefield sensitivity kernels. Moreover,
we predicted that part of the answer to the problem of
lacking low-frequency information on the model should
lie in utilizing scattered wavefields, because these travel
through the medium long enough to carry this information
(see also Snieder et al., 2002).

In this work we apply scattering theory to the time-
lapse problem, considering the time-lapse change as
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a perturbation of the singular part of the model, i.e.,
perturbation of the scattering potential. Under the
differential method framework, and applying the scattering-
based decomposition of the sensitivity kernel, we take
advantage of the illumination of the time-lapse change due
to multiple-scattering phenomena in order to improve the
perturbation estimates from FWI.

Scattering-based sensitivity kernel

The wavefield perturbation due to a medium change,
op, can be evaluated, within Born’s approximation
assumptions, using the so called secondary or adjoint
sources (Tarantola, 1984). Based on scattering theory,
we decomposed the full-acoustic-wavefield perturbation
dp into 13 components (Figure 1) that reveal different
levels of interaction between single and multiple-scattered
information within data (Macedo et al., 2012, 2013).
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Figure 1: Subkernels obtained from the decomposition
considering no perturbation in density. Uy, U, Up and Us
are Frechet's derivatives, also called sensitivity kernels.
The first is the full-wavefield derivative with respect to
the full bulk modulus, the second is the reference-
wavefield derivative with respect to the background bulk
modulus. The last two are scattered-wavefield derivatives
with respect to the background and singular part of the bulk
modulus respectively.

All components have the same functional structure (time
dependency is ommited for simplicity):

8pojsaorxei) = [ & Galxg) <0 [py(¥ix)] (1)

where Gy is a receiver-side green’s function extrapolator;
O a differential operator; py is the source-side wavefield;
and x denotes time convolution.

The name of the components of the scattered-wavefield
residual follow their physical interpretation according to the
possible values a, O and y can take (Figure 2). The
receiver-wavefield subscript v is either 0 for the reference
wavefield or s for the scattered wavefield. The source-
wavefield subscript o can, in addition to 0 and s, also
be b, representing the wavefield perturbation due to the
background perturbation. The potential index § can take
the values B, B, 8§ and V, representing the background
secondary potential, background part of full secondary
potential, singular part of full secondary potential, and
scattering potential, respectively.

For simplicity, let us analyze the situation without density
perturbation.  Then, the expression to evaluate the
reference- and scattered-wavefield residual is given by
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Figure 2: Physical interpretation of the subkernel
contributions. Each one of the cartoons shows three
elements: source-side wavefield; the operator applied
to generate the secondary source; and the receiver-side
wavefield extrapolator. Subcaptions indicate the name of
the contribution with subscripts explained in the text.

with i = 0B0, 0Bs, sBO, sBs, —0B0, —0Bs, bV0, bVs, and
j =080, 08s, s80, and s8s.

Under the separation into background and singular
components proposed here, estimates of background and
singular model perturbations can be evaluated individually
by backprojecting the residuals. The perturbation
estimates are given by the adjoint to equation (2). They

are obtained from
8o
=Y 1. (3
{5] @

The physical meaning of these estimates is the same
as the one given by Tarantola (1984). At each point
x of the model, they are the cross-correlation between
the direct wavefield from source with the (once or twice)
backpropagated residual from the receivers. for example,
estimates 5K§§(}33 explicitly reads
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To get the explicit expressions of the other sensitivity
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kernels, one just needs to do the proper substitution of the
wavefields and potentials.

Time-lapse survey as a FWI scattering problem

Both the baseline and monitor models are decomposed
into a background and a singular part, where both parts of
the baseline model are considered as known (background
part: best smooth velocity model; singular part: reflector
positions in the corresponding migrated image). The time-
lapse change can be considered as perturbation to the
singular or background parts.

If time-lapse change is considered a perturbation of the
singular part, according to equation (2), the data difference
between baseline and monitor is the scattered-wavefield
residual and the model perturbation estimates are
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Numerical experiments

To test our approach, we have set up two model sets
with simple layered models (see Figure 3). The two
baseline models are identical except for the deepest layer
which in one of them is a strong reflector. The monitor
models differ from the baseline models by a 5% velocity
perturbation of 400 m width within the 41" layer. The density
was considered constant in all models (2200 kg/m3). In
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Figure 3: The baseline (a and b) and monitor (¢ and d)
models for model sets 1 (a and ¢) and 2 (b and d).

this initial step of our study we consider that both the
background and singular parts of the baseline velocity
model are fully known.

The numerical experiments consisted of the following basic
steps:

1. Wavefields were calculated in the baseline and
monitor models as well as the smooth background
models to determine the full, reference, and scattered
true wavefield residuals for a given source.

2. These residuals were backpropagated once or twice
— in subkernels of Figure 2(g) and 2(h) — from a given
receiver by the proper extrapolator.

3. Each backpropagated wavefield residual was cross-
correlated with the proper direct wavefield (full,
reference, or scattered) from that given source.

4. Finally, the resulting wavefields were stacked over
time (frequency), sources and receivers.

We performed non-simultaneous multiple-shots
experiments. Source and receiver positions are marked
by white stars and triangles, respectively, in the following
figures.

Large offset surveys

In both sets of baseline/monitor models, we performed a
87-shots survey spread over a range of 2740 m spaced at
32 m.
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(c) 8Kt - model set 2: strong reflector
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Figure 4: Estimates for the full and singular-part bulk-
modulus perturbation.

In Figure 4 we show the estimates for the full and singular-
part bulk-modulus perturbation for both model sets. Since
the time-lapse change was considered a singular-part
perturbation, all estimates should be similar. In Figure 4(a),
we can see that in the absence of a strong reflector in
the bottom of the model, the conventional sensitivity kernel
gives a satisfactory estimate. By conventional sensitivity
we the one that uses reference wavefields as source-
side wavefield and receiver-side extrapolator. This was
expected as we use large offset information to perform the
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inversion. But this is not the case when a strong reflection
event interferes with the single scattering assumption even
when using a smooth background (Figure 4(a)).
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Figure 5: Individual contributions to SK&' seen in
Figure 4(d).

When multiple-scattering information is taken into account,
this yields much better estimates. In Figure 5 we exhibit the
individual contributions to SKE! seen in Figure 4(d). We
can see more clearly that the superposition of the multiple-
scattering contributions on the single-scattering estimate
corrects the latter.

Narrow offset surveys

When inversion is done with enclosing, source and receiver
arrays behave as in transmission tomography, which is
known to recover very well the low-frequency information
(see,e.qg., Pratt, 1999; Brenders and Pratt, 2007). On
the other hand, according to Zhu et al. (2009), when
dealing with reflection/scattered data, narrower offsets
(or reflection angles) may lead to fast-varying sensitivity
kernels, in opposition to slow-varying ones in large-offset
acquisitions. Fast-varying sensitivity kernels cause slower
convergence of the inversion procedure.

To evaluate how a narrow-offset acquisition geometry
affects the model reconstruction with our decomposed
kernels, we next performed a 46-shots survey spread over
a range of 904 m spaced at 20 m in both sets of baseline-

monitor models. This experiment demonstrates that the
self-illumination due to scattering gives better perturbation
estimates.

Figures 6(a) and 7(a) depict the estimates for the two sets
of models obtained with conventional sensitivity kernels.
As expected, the figures display fast-varying estimates
due to the narrow-offset illumination. But the message to
be taken home is that these estimates are practically the
same for both model sets. This shows that the reference-
wavefield-based kernel does not exploit the information
carried by the backscattered wavefield from the deep
reflector.

Figure 6(b) shows the estimate obtained with the
scattering-based sensitivity kernel for the set of models
with no strong reflector. It shows that this kernel delivers
almost no improvement compared with the conventional
one (Figure 6(a)) due to the absence of the back-scattered
information in this case.

On the other hand, in the strong reflector case, the multiple-
scattered information improves the perturbation estimates
giving a less varying and more delineated response
(compare Figure 7(a) with 7(b)). This indicates that the
multiple-scattering contribution perceives both the low- and
high-frequency content of the perturbation.

Finally, comparing the singular-part perturbation estimate
SKgS' with its multiple-scattering contribution SKgS,
(Figures 7(b) and 7(c)), we see that the latter contribution
alone does a better job. The reason is that in this case
the singularities, not the source array, act as sources of the
source-side wavefield in the kernel. So to speak, the strong
reflector is illuminating the time-lapse change from bottom
to top.
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Figure 6: Estimates of the perturbation in the absence of
strong reflector bellow the time-lapse change.

Summary and Conclusions

Considering time-lapse change as a perturbation on the
singular part we circumvent the problem of separating the
reference wavefield from the scattered which is subject to
a parallel study.
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Figure 7: Estimates and multiple-scattering contribution of
the perturbation in the presence of strong reflector bellow
the time-lapse change.

Using the FWI differential method, if we consider the
baseline model fully known, the data difference between
baseline and monitor surveys is the residual to be
minimized in order to obtain time-lapse change estimates
using the baseline as starting model.

In the presence of a strong reflector bellow the time-lapse
change, the use of the multiple-scattering-based sensitivity
kernels gave better estimates in both large- and narrow-
offset surveys compared to estimates obtained with the
conventional sensitivity kernel. In the large-offset case, it
was superior in handling the the backscattered information
coming from the deep reflector which, otherwise, would
give rise to spurious estimates. In the narrow-offset case,
the scattering-based sensitivity kernels help to bring out
the In other words, in some subkernels (e.g., Us ¢po) that
has the scattered wavefield as source-side wavefields, the
singularities/reflectors — origin of the scattered wavefield
— act as source of illumination, improving/enlarging
the espectral content of the estimate. low-frequency
information carried by the back-scattered wavefield coming
up from the deep reflector. In other words, for some
subkernels (e.g., Us o) the scattered wavefield acts
as source-side wavefield. Then, the singularities or
reflectors that originate the scattered wavefield act as
source of illumination, enhancing the spectral content of
the estimate.
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